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Abstract. Volatile Organic Compounds (VOCs) significantly influence global atmospheric chemistry through oxidative 

reactions with oxidants. These reactions produce key precursors to the formation of atmospheric fine particulate matter 

(PM2.5) and ozone (O3), which in turn play a crucial role in regulating O3 pollution and reducing PM2.5 concentrations. With 15 

the increasing diversity of VOCs, the need for advanced modeling techniques to accurately estimate the atmospheric 

oxidation reaction rate constants (ki, where i ∈ {OH, Cl, NO3, or O3}) has become more urgent. Here we introduce Vreact, 

a Siamese message passing neural networks (MPNN) architecture that jointly models VOC–oxidant reactivity. The model 

simultaneously predicts log10ki values and achieves a mean squared error (MSE) of 0.299 and a coefficient of determination 

(R²) of 0.941 on the internal test set. This framework overcomes the single-oxidant constraint of traditional models, enabling 20 

unified and scalable prediction of VOC oxidation kinetics across multiple oxidants. An interactive web tool 

(http://vreact.envwind.site:8001) is provided to facilitate non-expert access to reactivity screening. Vreact offers valuable 

insights into the formation and evolution of atmospheric pollutants, and serves as a critical resource for developing effective 

control and emission strategies, ultimately supporting global efforts to mitigate air pollution and improve public health. 

1 Introduction 25 

The rapid advancement in data-driven methodologies has revolutionized various fields, such as protein structure prediction 

(Abramson et al., 2024), molecular generation (Zhang et al., 2023), organic reaction prediction (Burés and Larrosa, 2023), 

and bioinformatics (Theodoris et al., 2023). Environmental challenges, particularly those associated with atmospheric 

chemistry and climate change, have also benefited from these innovations. As pollutants evolve under both anthropogenic 

and natural influences, the understanding of their chemical and physical properties has become increasingly vital for 30 

addressing global air quality and climate issues. Volatile Organic Compounds (VOCs) are organic chemicals that readily 
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vaporize at ambient temperature, contributing significantly to the complexity of atmospheric processes. Sources of VOCs are 

both natural and anthropogenic, with human activities such as industrial production, petrochemical processing, and vehicle 

exhaust contributing to the emission of a variety of VOCs. Additionally, biosphere sources, such as plants and forests, 

release compounds like isoprene and monoterpenes, which further complicate atmospheric VOC dynamics (Qin et al., 2021; 35 

Sindelarova et al., 2014). These highly reactive VOCs drives critical atmospheric reactions, such as the formation of ozone 

and secondary organic aerosols (SOA), and significantly contribute to environmental pollution. For instance, VOCs interact 

with nitrogen oxides (NOx) and radicals to form tropospheric O3 and SOA (Finlayson-Pitts and Pitts, 1997; Hallquist et al., 

2009; Han et al., 2018; Zhang et al., 2020; Ziemann and Atkinson, 2012). The role of VOCs in the formation of secondary 

pollutants such as PM2.5 (Huang et al., 2014; Zhao et al., 2015) and O3 is a growing concern due to the adverse impacts on 40 

human health (Kamarrudin et al., 2013), including respiratory diseases, cardiovascular conditions, and overall mortality. The 

dynamic interactions between VOCs and atmospheric oxidants determine the persistence and transformation of these 

pollutants, which in turn influence their contribution to global haze, photochemical smog, and acid deposition. 

VOCs undergo degradation and removal from the troposphere through diverse mechanisms driven by atmospheric oxidants. 

During the daytime, OH radicals serve as the primarily oxidants, facilitating rapid VOC oxidation. At night, however, the 45 

concentration of OH decreases sharply due to the lack of photochemical reactions, shifting the dominant oxidation 

pathways to NO3 radicals and O3. The reaction rates of VOCs with OH are approximately 30 times faster than those with 

NO3 radicals, with NO3 radicals, significantly influencing the spatial and temporal variation of the atmosphere's self-cleaning 

capacity and the formation of organic aerosols (Palmer et al., 2022; Zha et al., 2023). For example, regions with high 

isoprene concentrations often reflect differences in its reaction products and rates with OH and NOx rather than solely high 50 

emissions (Wells et al., 2020). Additionally, the structural diversity of VOCs determines their reaction mechanisms, 

influencing reaction rates. Highly reactive compounds such as alkenes, multi-substituted aromatics, and phenols exhibit 

higher reaction rates, whereas alkanes, alkyl nitrates, and ketones demonstrate relatively low reactivity (Ziemann and 

Atkinson, 2012). These variations underscore the significance of atmospheric oxidation reaction rates as key indicators of the 

persistence of organic pollutants in the atmosphere. Accurate assessment of these rates is essential for understanding the fate 55 

of VOCs, elucidating SOA formation processes, and addressing global challenges related to PM2.5 and ozone development.  

Given their importance, accurately predicting the atmospheric oxidation rates of VOCs is critical for understanding their 

persistence, transformation, and contribution to secondary pollutant formation. Traditionally, such predictions have relied on 

experimental kinetic modeling methods and quantitative structure-activity relationship (QSAR) approaches (Basant and 

Gupta, 2018; Liu et al., 2021). Experimental methods involve tracking reactant and product concentrations using techniques 60 

like chemical ionization mass spectrometry (CIMS), followed by kinetic fitting to determine Arrhenius parameters (Logan, 

1982; Wells et al., 1996). However, these methods are time-consuming and cover only a narrow subset of atmospheric VOCs. 

QSAR models offer a scalable alternative by leveraging molecular descriptors and statistical learning. Notable examples 

include AOPWIN™ module integrated in US EPI Suite™ software, which applies Partial Least Squares (PLS) regression to 

109 gas-phase reaction with hydroxyl radicals (Atkinson, 1986, 1987; Kwok and Atkinson, 1995), and later expansions using 65 
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a broader dataset (Öberg, 2005). Some models have also incorporated machine learning algorithms such as multiple linear 

regression (MLR) (Liu et al., 2020, 2022) for predicting reactions with NO3 and OH and artificial neural networks for 

predicting reactions with O3 (Fatemi, 2006). Despite their utility, these models generally rely on predefined descriptors and 

are typically limited to reactions with a single type of oxidant. Recent advances in deep learning (DL), particularly graph 

neural networks (GNN), have improved molecular representation by learning features directly from molecular graphs. This 70 

enables more flexible and accurate prediction of chemical properties without requiring predefined descriptors. GNNs have 

been successfully applied in atmospheric chemistry and other fields tasks, such as in predicting vapor pressures with GC²NN 

(Krüger et al., 2025) and modeling reaction rate constants involving with OH using GAT–GIN hybrid architectures (Huang 

et al., 2024). However, like traditional models, these GNN-based frameworks have been developed for single-molecule 

systems and thus fall short in capturing the complexity of multi-molecule reactions in real environments. In contrast, the 75 

atmosphere involves competing and sequential reactions between VOCs and multiple oxidants—OH, NOX, Cl, and O₃—

depending on time of day, region, and chemical conditions. This multiplicity underscores the urgent need for models that can 

simultaneously learn and predict VOC reactivity across multiple oxidants. To meet this need, message passing neural 

networks (MPNN) offer a powerful framework (Gilmer et al., 2017). MPNNs propagate information across molecular graphs, 

capturing both atomic-level features and topological context. Extensions of MPNN, such as the communicative GraphRXN  80 

(Li et al., 2023) and directed MPNN Chemprop (Heid et al., 2024), have shown promise in learning reactivity across 

multiple reactants. Yet, their application has largely focused on synthesis or materials chemistry, not atmospheric multiphase 

oxidation. 

This study addresses this gap by proposing Vreact, a novel Siamese MPNN architecture capable of jointly modelling 

reactions between VOCs and four major atmospheric oxidants. Unlike previous models that treat each oxidant independently, 85 

Vreact processes VOC–oxidant pairs in a unified framework, it learns representations from the molecular graphs of VOCs 

and oxidants through the MPNN, and encodes their interactions via feature aggregation. This design enables the model to 

accept arbitrary VOC–oxidant combinations and simultaneously predict reaction rate constants ki (where i ∈ {OH, Cl, NO3, 

or O3}). Compared to traditional single-oxidant prediction models, Vreact shows significantly improved performance, 

achieving higher accuracy and and broader generalizability across multiple oxidants. Furthermore, the model’s interaction 90 

module captures atomic-level interaction patterns, providing mechanistic insights into VOC oxidation process via 

interpretable interaction weight matrices. Applying Vreact to 447 atmospheric VOCs not included in the training data 

revealed a wide distribution of oxidation reactivities and confirmed that alkenes and aromatics exhibit higher reactivity, 

acting as key precursors for ozone and SOA formation. 
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2 Methods and Data 95 

2.1 Collection and Preprocessing of Reaction Rate Constant Dataset 

The VOCs reaction rate constant dataset compiled by McGillen et al. is utilized in the study, which includes gas-phase 

reaction rate constants of natural atmospheric VOCs, halocarbons, and their degradation products with OH, Cl, NO3 

radicals, and O3, within a temperature range of 250-370K (McGillen et al., 2020). Under thermodynamic standard conditions 

at 298K, a total of 2802 gas-phase reaction rate constant data points were obtained, encompassing 1586 VOCs and 4 100 

oxidants. This dataset includes ki values for 1363 VOCs with OH, 735 VOCs with Cl, 393 VOCs with NO3 radicals, and 

311 VOCs with O3. Due to the wide range of reaction rate constants ki in the dataset (1.460×10-21~7.550×10-

10cm3/(molecule⋅s), S.D.=±1.040×10-10), the data were log-transformed to log10ki to reduce skewness and mitigate the 

influence of outliers on the model. To ensure a balanced distribution of each type of oxidant in the training, validation, and 

internal test sets, the dataset was divided using stratified random sampling into training, validation and internal test sets in an 105 

8:1:1 ratio (Table S1). 

2.2 Construction and Training of the Vreact Model 

All VOCs and oxidant molecules were converted into graphs G (V, E) (Text S1). The generated molecular graph G includes 

ten types of atomic information for each non-hydrogen atom, such as element type, chirality, and atomic hybridization type, 

as well as four types of bond information, including bond type and conjugation (Table S2). A Siamese MPNN architecture-110 

Vreact, was designed to simultaneously accept input features of VOCs and oxidant molecules (Fig. 1). The model takes the 

SMILES of VOCs and oxidants as input and primarily includes a VOC molecular graph representation layer and a MPNN 

layer, an oxidant molecular graph representation layer and MPNN layer, an interaction layer, and a prediction layer. The 

molecular graph G(V, E) encoding layers of VOCs and oxidants containing node feature matrix X and edge feature matrix Y, 

which learn molecular properties through the MPNN layer (Gilmer et al., 2017). The MPNN forward propagation process 115 

consists of two phases: Message Passing Phase and Readout Phase and generates molecular feature tensors A for VOCs and 

B for oxidants. Subsequently, the interaction layer transforms the molecular features A of VOCs and B of oxidants into 

tensors A1 and B1 of the same shape and concatenates them into tensor Z. Reaction rate constants are determined not only by 

the molecular structure of the reactants but also by the interactions between the reactants. The interaction feature tensor I is 

dot-multiplied with A to obtain the oxidant-affected VOC feature tensor A'; similarly, it is dot-multiplied with B to obtain 120 

the VOC-affected oxidant feature tensor B'. These operations embed the learned interaction features into the molecular 

structure features, providing a more comprehensive representation of the chemical reaction mechanisms between the two 

reactants. The prediction phase is composed of a pooling layer and three fully connected layers. The pooling layer uses the 

Set2Set method to achieve global average pooling, and the fully connected layers map the input features to the final 

predicted values (log10ki). More details can be found in Text S2. 125 
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During model training, Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) was employed to address the fixed 

learning rates issue in traditional gradient descent methods. Adam adaptively adjusts the learning rate of each parameter 

using first-order moment estimates (mean of the gradients) and second-order moment estimates (exponentially moving 

average of the uncentered variance of the gradients), aiding in rapid model convergence. Bayesian optimization was utilized 

for hyperparameter tuning, which included the initial learning rate of the optimizer (lr), batch size, L2 regularization 130 

parameter (weight decay), dropout rate (p), and MPNN time steps (T) (Text S3). After identifying the optimal 

hyperparameter combination (Table S3) on the validation set, and the best model was saved. The predictive performance of 

the model was assessed using Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 

and coefficient of determination (R²) (Text S4). For more information on the model implementation, please refer to Text S5.  

 135 

 
Figure 1. Schematic of the Vreact Architecture. SMILES of VOCs and oxidants are converted into molecular graphs, where nodes 

represent atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a Siamese MPNN 

architecture, the Vreact model processes these features through separate MPNN layers for VOCs and oxidants. The final 

prediction layer outputs log10ki, incorporating both molecular and interaction features. 140 
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3 Results and Discussion 

3.1 Analysis of VOC and Oxidant Reaction Data Distribution and Characteristics 

The categories and distribution characteristics of VOC and oxidant reaction data are first explored in the study, which 

includes log10ki data for 1586 VOCs with OH, Cl, NO3, and O3 (Fig. 2A). The dataset contains the most data for OH, 

accounting for 48.64% of the total, as OH plays a crucial role in the atmosphere, rapidly reacting with organic pollutants 145 

and dominating their removal process. The remaining data points are for Cl (26.23%), NO3 (14.03%), and O3 (11.1%) in 

descending order of data quantity. O3 is primarily produced through photochemical reactions involving NOx and VOCs, 

while NO3, as the principal nighttime atmospheric oxidant, significantly contributes to the oxidation and removal of trace 

gases. The dataset encompasses VOCs with diverse chemical structures, including 22 functional groups such as double 

bonds, esters, benzene rings, and halogen atoms (F, S, Cl, Br, and I) (Fig. 2B). This extensive chemical structure space 150 

facilitates the model's ability to learn more structural features and enhances its generalization capability.  

Moreover, although there is some overlap in the reactions of the four oxidants with VOCs, each oxidant also has specific 

VOC reactions (Fig. 2C). There are 747 VOCs with ki data for only one oxidant and 839 VOCs with ki data for multiple 

oxidants, of which 81 VOCs have data for all four oxidants. For example, isoprene can react with OH, NO3, and Cl 

through hydrogen abstraction reactions, and undergo addition reactions with O3 via its unsaturated double bonds. 155 

Furthermore, the four oxidants exhibit different log10ki value distribution with VOCs due to differences in chemical 

structures and reactivity (Fig. 2D). OH, due to its high oxidation potential, usually reacts quickly with VOCs via hydrogen 

abstraction, with log10ki concentrated in the range of -14.000 to -10.000. In contrast, O3 typically undergoes slower addition 

reactions with unsaturated bonds in reactants (Ziemann and Atkinson, 2012), with log10ki ranging from -20.836 to -13.721. 

NO3 can participate in both hydrogen abstraction and addition reactions, resulting in a wider range of log10ki values. The 160 

diverse reaction rates of these oxidants maintain the composition and oxidative state of aerosols in the atmosphere, but the 

uneven distribution of their values makes predicting ki more challenging. Even for the same oxidant, VOCs with different 

structures exhibit varied reaction rates in gas-phase oxidation reactions. For example, NO3 reacts very slowly with aromatic 

rings, with a ki value of 3.900×10-16 cm³/(molecule⋅s) for xylene. In contrast, NO3 can rapidly abstract hydrogen from 

hydroxyl groups, with a ki value of up to 1.72×10-10 cm³/(molecule⋅s) for 3-methylcatechol. 165 
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Figure 2. Visualization of VOCs Dataset. (A) Proportion of the four types of oxidants. (B) Number of VOCs containing each 

functional group. MultFct: multifunctional; AroRings: aromatic rings; NaRings: non-aromatic rings; Tbonds: triple bonds; 

CumDBs: cumulated double bonds; ConjDBs: conjugated double bonds; SepDBs: separated double bonds. (C) Number of VOCs 

that can undergo oxidation reactions with the four oxidants. (D) Distribution of log10ki values for the four oxidants. (E) Heatmap of 170 
reaction rate constants based on VOCs clustering, where each grid represents a cluster of structurally similar VOCs. The color 

gradient indicates the log10ki values, with red indicating higher log10ki values (faster reaction rates), blue indicating lower log10ki 

values (slower reaction rates), and white indicating the absence of log10ki data for that cluster. The cluster containing butyl 

acrylate are enclosed within the black box. 

Furthermore, the same VOCs show different reaction rates with different oxidants. To explore the relationship between 175 

structural differences of VOCs and reaction rates, the study employed the Self-Organizing Map (SOM) algorithm (Kohonen, 

2006) to visualize log10ki values. Based on the Morgan fingerprint similarity of VOCs, the VOCs were clustered into 100 

groups, each containing VOCs with similar molecular structures. Each grid in Fig. 2E represents a cluster of VOCs, and the 

color gradient indicates the log10ki values of their reactions with the corresponding oxidants. By comparing the log10ki values 

of the same VOCs with four oxidants, the relationship between structural features and reaction rates for each oxidant can be 180 

evaluated. For example, butyl acrylate (CAS RN.141-32-2) reacts slowly with NO3 radicals and O3, mainly due to the 

unsaturated addition reactions through the carbon-carbon double bond, where the ester group in the molecular structure 

produces an electron-withdrawing effect, reducing the electron density in the π bond and thus lowering the reaction rate (Gai 

et al., 2009; Wang et al., 2010). In contrast, it reacts faster with OH and Cl through hydrogen abstraction rather than 
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addition (Le Calvé et al., 1997; Ohta, 1984; Wang et al., 2018). This demonstrates that the dataset, which includes various 185 

oxidants and VOCs, exhibits diverse log10ki values. The overall log10ki values differ significantly between different oxidants. 

This diverse dataset enables the model to learn the reaction information between VOCs and different oxidants, thereby 

improving model performance and prediction accuracy. 

3.2 Performance Evaluation of Vreact Model 

The Siamese MPNN architecture of the Vreact captures both molecular features of VOCs and oxidants as well as their 190 

interaction dynamics simultaneously. During hyperparameter optimization, the set of hyperparameters that minimized MSE 

on the validation set was selected. After training for 46 epochs (Fig. S1), Vreact achieved robust predictive performance on 

the validation set, with R² of 0.961, MSE of 0.194 and MAE of 0.314 for log10ki (Fig. 3A). On the internal test set, the model 

achieved R² of 0.941, MSE of 0.299 and MAE of 0.322 for log10ki (Fig. 3A), indicating robust predictive capability and 

excellent generalization ability for unseen VOC-oxidant combinations. The small MAE difference between the validation set 195 

and internal test sets, despite a larger difference in MSE, indicates that MSE is more sensitive to outliers or large errors, 

while MAE directly reflects the average absolute prediction error. Although the R² on the internal test set is slightly lower 

than on the validation set, this minor discrepancy does not affect the model's robust predictive ability. The result on the 

internal test set is available in Table S4. 

To explore the predictive performance of the Vreact model for different types of oxidants, we evaluated the prediction 200 

performance for OH, Cl, O3, and NO3 separately. The regression fit of predicted log10ki values versus experimental values 

for the four oxidants (Fig. 3B) shows that O3 and NO3 have higher dispersion compared to OH and Cl. The R² values for 

the reactions of the four oxidants, in descending order, are OH > Cl > NO3 > O3, with OH and Cl having R² values of 

0.942 and 0.916, respectively. The prediction performance for NO3 radicals and O3 is comparatively lower, with R² values 

below 0.800. The OH dataset is the most abundant and concentrated, whereas the log10ki values for NO3 are highly 205 

dispersed, which may cause the model to have difficulty capturing all patterns and relationships for NO3, leading to 

prediction biases. 
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Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (A) MSE, MAE, R² of Vreact (trained on 

the McGillen et al. dataset) on the validation set, internal test set, and external post-2020 test set. (B) R² values for log10ki 210 
predictions of four oxidants’ reactions in the internal test set. (C) Distribution of AE between predicted and experimental log10ki 

values for the four oxidants in the internal test set. (D-F) The chemical spatial distribution of VOCs in the OH, O3, and NO3 

datasets used in this study and prior literatures. (G) R² comparison among previously published single-oxidant models, the 

original Vreact (evaluated on literature test set), and Retrained Vreact (trained and tested using the same splits as the literature 

models) highlighting adaptability. 215 
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The Absolute Error (AE) between the predicted and experimental log10ki values for the four types of oxidants are presented 

in Fig. 3C. The median AE for OH is 0.149, while O3 and NO3 exhibit median AEs of 0.301 and 0.287, respectively, which 

are slightly higher than that of OH. Overall, 84% of the AE values for O3 and NO3 are within 1. As depicted in the Fig. 3C, 

individual outliers in AE contribute to the increased RMSE and MAE for O3 and NO3, and the consequent decrease in R². 

For example, the AE for the reaction of NO3 with azulene (C10H8) is 4.653. Azulene, an aromatic hydrocarbon composed of 220 

a seven-membered ring fused to a five-membered ring, is an isomer of naphthalene (C10H8). NO3, as electrophilic reagents, 

tend to attack regions with higher electron density. Compared to naphthalene, the electron density distribution of azulene is 

uneven, with certain regions having high electron density that may facilitate effective interactions with NO3. Additionally, 

the structure of azulene may reduce steric hindrance, allowing NO3 radicals easier access to reaction sites (Atkinson et al., 

1992), resulting in a higher reaction rate constant and increasing the model's prediction difficulty. Similarly, the predicted 225 

log10ki value for the reaction of NO3 with diiodomethane (CH2I2) is significantly lower than the true value (AE=2.763). This 

discrepancy may be attributed to the limited representation of iodine-containing VOCs in the dataset, with only iodomethane 

(CH3I) and iodoethane (C2H5I) having ki values in the training and validation sets. This limited data prevents the model from 

fully learning the reaction characteristics of iodine-containing compounds, resulting in a larger prediction error for 

diiodomethane with NO3 radicals. 230 

3.3 Comparation with Single-Oxidant Prediction Models 

Most existing machine learning models for predicting VOC reaction rates constants are tailored for individual oxidants, 

limiting their applicability to complex atmospheric systems involving multiple oxidants. In contrast, the Siamese MPNN 

architecture of the Vreact enables simultaneous learning of molecular features and interaction patterns across different VOC–

oxidant pairs within a unified framework. To benchmark Vreact against previously published single-oxidant QSAR/ML 235 

models, we selected three top-performing models developed under 298K conditions: Liu et al. (2020) for OH (180 data 

points), Xu et al. (2013) for O3 (95 data points), and Liu et al. (2022) for NO3 radicals (189 data points). Prior to evaluation, 

we applied Uniform Manifold Approximation and Projection (UMAP) to reduce the dimensionality of the Morgan molecular 

fingerprints to visualize the chemical space of both the comparison datasets and the Vreact training set (Figs. 3D-F). The 

observed structural overlap confirms that Vreact’s dataset spans a broad and diverse chemical space. Given that our study 240 

used different data than those reported in the literature, we employed two strategies for comparison. First, the pre-trained 

Vreact model (trained on the McGillen dataset) was directly applied to the test sets from the literature to evaluate 

extrapolation performance. Second, Vreact was retrained on each literature dataset using their original train/test splits, 

allowing a direct comparison with published models on literature test sets (Retrained Vreact).  

As shown in Fig 3G. both the original Vreact model and its retrained version consistently outperformed the single-oxidant 245 

models from Liu et al. (2022) and Xu et al. (2013) on the OH and O3 literature test sets, achieving higher R² values and 

demonstrating superior regression fits between predicted and experimental values. These results highlight the capability of 

the Vreact architecture—whether trained on a broad multi-oxidant dataset or fine-tuned on smaller single-oxidant datasets—
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to effectively learn structural features of VOCs and oxidants and capture complex molecular interactions through its Siamese 

MPNN framework. For the NO3 prediction task, the original Vreact model performed poorly, but the retrained Vreact model 250 

showed an improvement in R². This suggests that a unified dataset containing multiple oxidants may introduce additional 

noise during training, affecting the model's ability to learn key interaction features between NO3 and VOCs. Nonetheless, the 

model’s R² on the literature test set still reached 0.842, indicating only a slight loss in predictive accuracy, which is 

acceptable. 

3.4 Mechanism Insights Through Interaction Analysis 255 

The interaction layer of the Vreact model can elucidate the atomic interaction mechanisms between VOCs and oxidants. The 

interaction matrix, sized n1×n2, where n1 represents the number of non-hydrogen atoms in the VOC molecule and n2 

represents the number of non-hydrogen atoms in the oxidant molecule. Mapping these interaction coefficients onto the 

molecular structure highlights key atoms that determine the reaction rate.  

To exemplify this mechanism, we analysed specific cases. 2-methyl-4-penten-2-ol is an unsaturated oxygenated volatile 260 

organic compound (OVOC) that constitutes a significant proportion of the atmospheric VOCs, primarily sourced from 

industrial solvents used in ink and jet ink manufacturing (Li et al., 2021). As shown in Fig. 4A, the interaction coefficient for 

the distal unsaturated carbon atoms is the highest during the reaction with O3, indicating these are likely the reaction sites for 

O3 attack. It is inferred that O3 adds to the unsaturated carbon-carbon double bond through an addition reaction, forming 

primary ozonides (POZs). These POZs are unstable intermediates that rapidly cleave to produce carbonyl compounds and 265 

carbon-based radicals, which further rearrange to form secondary ozonides (SOZs). The SOZs and their reaction products are 

precursors of SOA. Another example is γ-caprolactone (GCL), a five-membered ring ester used in perfumes, which rapidly 

reacts and degrades with OH upon entering the atmosphere. Interaction weight analysis shows that the carbon atom linked 

to the ethyl group contributes most to GCL's oxidative degradation by OH (Fig. 4B), suggesting that OH initially attacks 

this carbon atom, abstracting a H atom to form a carbon radical. Previous studies indicate that the reactivity of carbons 270 

adjacent to the oxygen atom in lactones is particularly significant in reactions with OH, especially when alkyl substituents 

are attached to this carbon, which enhances its reactivity (Barnes et al., 2014). 
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Figure 4. Visualization of atomic weights in VOC molecules. (A) Reaction process of 2-methyl-4-penten-2-ol with O3. (B) Reaction 

process of γ-caprolactone with OH. The darker the highlighted color of the atom, the stronger its interaction in the gas-phase 275 
oxidation reaction. 

3.5 Evaluating Extrapolation Ability and Prioritizing VOCs for Environmental Impact 

To further validate the extrapolation capability and generalization performance of the Vreact model, developed using a 

dataset compiled up to the year 2020 (Baptista et al., 2021; Joudan et al., 2022; Li et al., 2021), additional ki data from 

experimentally measured VOCs and oxidants published after 2020 were collected as an external test set (post-2020 test set) 280 

(Table 1). The prediction results showed that the AE between the experimental log10ki and the predicted values was within 1, 

with the reaction rate constant prediction for γ-heptalactone and OH exhibiting the smallest prediction error. The AE for γ-

heptalactone with OH was only 0.005, and the overall MAE was 0.240, with an MSE of 0.112 and an R² of 0.98 (Fig. 3A 

shown in red). The results indicate that the Vreact can accurately predict the atmospheric oxidation reaction rate constants of 

unknown VOCs, demonstrating its potential application in addressing complex atmospheric chemistry issues involving the 285 

interactions between VOCs and oxidants. 

 

Table 1. The prediction results on the post-2020 test set. 

VOC name 
Chemical 

structure 
Oxidant 

Experimental 

log10ki 

Predicted 

log10ki 
AE Ref. 

2-methyl-4-

penten-2-ol 
 

O3 -17.370 -16.712 0.658 
(Li et al., 

2021) 
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γ-caprolactone 

 

OH -11.194 -11.209 0.015 
(Baptista et 

al., 2021) 

Cl -9.886 -10.149 0.263 
(Baptista et 

al., 2021) 

γ-heptalactone 

 

OH -11.056 -11.051 0.005 
(Baptista et 

al., 2021) 

Cl -9.770 -9.943 0.173 
(Baptista et 

al., 2021) 

FESOH 

 

OH -11.377 -11.876 0.499 
(Joudan et 

al., 2022) 

Cl -10.824 -10.759 0.065 
(Joudan et 

al., 2022) 

FESOH: 2- (1,1,2-trifluoro-2-heptafluoropropyloxy-ethylsulfanyl)-ethanol; AE: absolute error 

 290 

Despite the identification of hundreds of VOC species, the environmental behavior of most VOCs in the atmosphere and 

their potential contributions to particulate matter formation and ozone increase remain largely unclear. To address this gap, 

we employed the Vreact model to evaluate the atmospheric oxidation reaction rate constants of a broad spectrum of VOCs. 

Molecular structures for 447 VOCs with unknown atmospheric oxidation ki values were collected from previous research, 

which evaluated more than 500 Chinese domestic source profiles, including literature and field measurements (Sha et al., 295 

2021) (Table S5). After excluding VOCs already included in the Vreact dataset, 296, 339, 416, and 369 data points for OH, 

Cl, O3, and NO3 were retained, respectively. The prediction results indicated that, although the oxidation reaction rates of 

VOCs in the atmosphere vary (Fig. 5A), the differences in log10ki values are primarily influenced by the type of oxidant, with 

smaller variations in log10ki values observed for different VOCs reacting with the same oxidant. Among these, reactions with 

OH and Cl were the fastest, consistent with the results from the McGillen dataset analysis used in the modeling (Fig. 2D). 300 

Additionally, the changes in the proportion of VOC types within different reaction rate intervals (Fig. 5B) demonstrated that 

the composition of VOC types varied with reaction rates. Halocarbons exhibited relatively slower reaction rates, while 

alkenes and aromatics reacted relatively quickly, and oxygenated compounds showed a more uniform rate distribution. 

Consequently, areas with high emissions of alkenes and aromatics will produce more reaction products per unit time, 

providing precursors for O3 and SOA formation (Gao et al., 2021). 305 

The top five VOCs with the fastest reaction rates with OH, Cl, O3, and NO3 were further examined in the study (Fig. 5C). 

Among these, 2,6-Dimethyl-2,6-cyclooctadiene (CAS RN: 3760-14-3) is a volatile compound with an irritating odor, 

exhibiting the fastest reaction rates with OH, Cl, and O3. Additionally, 1,3-cyclopentadiene (CAS RN: 542-92-7) and 1,4-

Dimethylcyclohexene (CAS RN: 70688-47-0) also showed high reaction rates with O3, Cl, and OH, likely due to the 

presence of double bonds and cyclic structures in these molecules. The carbon atoms in the double bonds and those 310 

connected to methyl groups generally have high reactivity. Therefore, it could be inferred that these VOCs, or VOCs with 
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similar structures, may significantly contribute to the formation of fine particulate matter and the increase in ozone in the 

atmosphere. 

 
Figure 5. Predicted reaction rate constants for VOCs atmospheric oxidation reactions. (A) Predicted mean log10ki values for 315 
different types of VOCs. (B) Distribution of VOC types ranked by predicted reaction rates, divided into quartiles: the fastest 25% 

(Q1), 25%-50% (Q2), 50%-75% (Q3), and the slowest 25% (Q4). (C) Molecular structures of VOCs with the fastest reaction rates 

with the four oxidants. 

4 Concluding 

Understanding the oxidation rates of VOCs is crucial for evaluating their impact on atmospheric chemistry and air pollution. 320 

In this study, Vreact, a deep learning-based model, is introduced to predict VOC oxidation reaction rate constants with 

multiple oxidants simultaneously. The model demonstrates high predictive accuracy while offering mechanistic insights into 

VOC oxidation by analyzing atomic-level interaction patterns. By incorporating a broad range of VOC structures and 

oxidant interactions, Vreact enhances its generalizability, allowing for large-scale screening of previously uncharacterized 
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VOC oxidation rates. Additionally, an interactive web-based tool (http://vreact.envwind.site:8001) is provided (Fig. S2), 325 

which facilitates VOC oxidation rate predictions for non-experts. This tool significantly improves accessibility, enabling 

researchers, policymakers, and environmental agencies to assess VOC reactivity and prioritize mitigation efforts effectively. 

Given the increasing complexity of atmospheric pollution and its global impacts on human health and climate, these 

advancements in predictive modeling offer valuable resources for addressing worldwide air quality challenges. 

However, Vreact has several limitations. The model’s performance depends on the availability and quality of experimental 330 

kinetic data. The training dataset primarily relies on measured reaction rate constants, which may not cover all VOCs, 

especially those with complex structures or containing halogen and sulfur groups. As a result, VOC classes that are 

underrepresented in the dataset, such as iodine-containing compounds, may exhibit prediction errors, highlighting the need 

for further data collection. Additionally, while Vreact captures essential molecular interactions, biases may arise from the 

existing reaction rate constants datasets, especially when reaction conditions or mechanisms differ from those used in 335 

training. Extrapolating reaction rate constants for uncharacterized VOCs presents another challenge. While the model shows 

strong generalization capabilities, its accuracy may decrease for highly reactive or structurally unique compounds. To 

improve predictions, future work could integrate high-throughput quantum chemical calculations and automated 

experimental validation. Optimizing inference speed and integrating Vreact with atmospheric chemistry models could 

enhance its applicability in real-time air quality simulations. 340 

Data and Code Availability 

The code and datasets used and/or analyzed during the current study are available at https://github.com/Luo-Jiaqi/Vreact and 

supplemental information. 

Supplementary Material  

Detailed information about the learning curve of the Vreact training process (Figure S1); User interface of the web platform 345 

for predicting VOC reaction rate constants using the Vreact model (Figure S2); Graph representation of molecular structures 

(Text S1); MPNN message passing and readout phases for molecular graphs (Text S2); Regularization and early stopping 

techniques in the Vreact model training (Text S3); Model performance evaluation metrics (Text S4); Implementation of the 

Vreact model (Text S5); Distribution of VOCs reactions with atmospheric oxidants across datasets (Table S1); Atomic 

features and bond features used in molecular graph representation (Table S2); Hyperparameter search space and optimal 350 

settings for the Vreact model (Table S3);Experimental and predicted log10ki values for VOCs on the internal test dataset 

(Table S4); 447 real-world atmospheric VOCs (Table S5). 
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