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Abstract. Volatile Organic Compounds (VOCs) significantly influence global atmospheric chemistry through oxidative
reactions with oxidants. These reactions produce key precursors to the formation of atmospheric fine particulate matter
(PM2;5) and ozone (O3), which in turn play a crucial role in regulating O3 pollution and reducing PM2 s concentrations. With
the increasing diversity of VOCs, the need for advanced modeling techniques to accurately estimate the atmospheric
oxidation reaction rate constants (ki, where i € {¢OH, *Cl, NOs, or Os}) has become more urgent. Here we introduce Vreact,
a Siamese message passing neural networks (MPNN) architecture that jointly models VOC-oxidant reactivity. The model
simultaneously predicts logioki values and achieves a mean squared error (MSE) of 0.299 and a coefficient of determination
(R=rof 0.941 on the internal test set. This framework overcomes the single-oxidant constraint of traditional models, enabling
unified and scalable prediction of VOC oxidation Kinetics across multiple oxidants. An interactive web tool

(http://vreact.envwind.site:8001) is provided to facilitate non-expert access to reactivity screening. Vreact offers valuable

insights into the formation and evolution of atmospheric pollutants, and serves as a critical resource for developing effective

control and emission strategies, ultimately supporting global efforts to mitigate air pollution and improve public health.

1 Introduction

The rapid advancement in data-driven methodologies has revolutionized various fields, such as protein structure prediction
(Abramson et al., 2024), molecular generation (Zhang et al., 2023), organic reaction prediction (Burés and Larrosa, 2023),
and bioinformatics (Theodoris et al., 2023). Environmental challenges, particularly those associated with atmospheric
chemistry and climate change, have also benefited from these innovations. As pollutants evolve under both anthropogenic
and natural influences, the understanding of their chemical and physical properties has become increasingly vital for

addressing global air quality and climate issues. Volatile Organic Compounds (VOCSs) are organic chemicals that readily
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vaporize at ambient temperature, contributing significantly to the complexity of atmospheric processes. Sources of VOCs are
both natural and anthropogenic, with human activities such as industrial production, petrochemical processing, and vehicle
exhaust contributing to the emission of a variety of VOCs. Additionally, biosphere sources, such as plants and forests,
release compounds like isoprene and monoterpenes, which further complicate atmospheric VOC dynamics (Qin et al., 2021;
Sindelarova et al., 2014). These highly reactive VOCs drives critical atmospheric reactions, such as the formation of ozone
and secondary organic aerosols (SOA), and significantly contribute to environmental pollution. For instance, VOCs interact
with nitrogen oxides (NOy) and radicals to form tropospheric Oz and SOA (Finlayson-Pitts and Pitts, 1997; Hallquist et al.,
2009; Han et al., 2018; Zhang et al., 2020; Ziemann and Atkinson, 2012). The role of VOCs in the formation of secondary
pollutants such as PM2s (Huang et al., 2014; Zhao et al., 2015) and Os is a growing concern due to the adverse impacts on
human health (Kamarrudin et al., 2013), including respiratory diseases, cardiovascular conditions, and overall mortality. The
dynamic interactions between VOCs and atmospheric oxidants determine the persistence and transformation of these
pollutants, which in turn influence their contribution to global haze, photochemical smog, and acid deposition.

VVOCs undergo degradation and removal from the troposphere through diverse mechanisms driven by atmospheric oxidants.
During the daytime, *OH radicals serve as the primarily oxidants, facilitating rapid VOC oxidation. At night, however, the
concentration of *OH decreases sharply due to the lack of photochemical reactions, shifting the dominant oxidation
pathways to NOs radicals and Os. The reaction rates of VOCs with *OH are approximately 30 times faster than those with
NOj radicals, with NOj3 radicals, significantly influencing the spatial and temporal variation of the atmosphere's self-cleaning
capacity and the formation of organic aerosols (Palmer et al., 2022; Zha et al., 2023). For example, regions with high
isoprene concentrations often reflect differences in its reaction products and rates with «OH and NOy rather than solely high
emissions (Wells et al., 2020). Additionally, the structural diversity of VOCs determines their reaction mechanisms,
influencing reaction rates. Highly reactive compounds such as alkenes, multi-substituted aromatics, and phenols exhibit
higher reaction rates, whereas alkanes, alkyl nitrates, and ketones demonstrate relatively low reactivity (Ziemann and
Atkinson, 2012). These variations underscore the significance of atmospheric oxidation reaction rates as key indicators of the
persistence of organic pollutants in the atmosphere. Accurate assessment of these rates is essential for understanding the fate
of VOC:s, elucidating SOA formation processes, and addressing global challenges related to PM.s and 0zone development.
Given their importance, accurately predicting the atmospheric oxidation rates of VOCs is critical for understanding their
persistence, transformation, and contribution to secondary pollutant formation. Traditionally, such predictions have relied on
experimental kinetic modeling methods and quantitative structure-activity relationship (QSAR) approaches (Basant and
Gupta, 2018; Liu et al., 2021). Experimental methods involve tracking reactant and product concentrations using techniques
like chemical ionization mass spectrometry (CIMS), followed by kinetic fitting to determine Arrhenius parameters (Logan,
1982; Wells et al., 1996). However, these methods are time-consuming and cover only a narrow subset of atmospheric VOCs.
QSAR models offer a scalable alternative by leveraging molecular descriptors and statistical learning. Notable examples
include AOPWIN™ module integrated in US EPI Suite™ software, which applies Partial Least Squares (PLS) regression to
109 gas-phase reaction with hydroxyl radicals (Atkinson, 1986, 1987; Kwok and Atkinson, 1995), and later expansions using
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a broader dataset (Oberg, 2005). Some models have also incorporated machine learning algorithms such as multiple linear
regression (MLR) (Liu et al., 2020, 2022) for predicting reactions with NOs; and *OH and artificial neural networks for
predicting reactions with O3 (Fatemi, 2006). Despite their utility, these models generally rely on predefined descriptors and
are typically limited to reactions with a single type of oxidant. Recent advances in deep learning (DL), particularly graph
neural networks (GNN), have improved molecular representation by learning features directly from molecular graphs. This
enables more flexible and accurate prediction of chemical properties without requiring predefined descriptors. GNNs have
been successfully applied in atmospheric chemistry and other fields tasks, such as in predicting vapor pressures with GCHRIN
(Kriger et al., 2025) and modeling reaction rate constants involving with «OH using GAT-GIN hybrid architectures (Huang
et al., 2024). However, like traditional models, these GNN-based frameworks have been developed for single-molecule
systems and thus fall short in capturing the complexity of multi-molecule reactions in real environments. In contrast, the
atmosphere involves competing and sequential reactions between VOCs and multiple oxidants—eOH, NOx, *Cl, and Os—
depending on time of day, region, and chemical conditions. This multiplicity underscores the urgent need for models that can
simultaneously learn and predict VOC reactivity across multiple oxidants. To meet this need, message passing neural
networks (MPNN) offer a powerful framework (Gilmer et al., 2017). MPNNs propagate information across molecular graphs,
capturing both atomic-level features and topological context. Extensions of MPNN, such as the communicative GraphRXN
(Li et al., 2023) and directed MPNN Chemprop (Heid et al., 2024), have shown promise in learning reactivity across
multiple reactants. Yet, their application has largely focused on synthesis or materials chemistry, not atmospheric multiphase
oxidation.

This study addresses this gap by proposing Vreact, a novel Siamese MPNN architecture capable of jointly modelling
reactions between VOCs and four major atmospheric oxidants. Unlike previous models that treat each oxidant independently,
Vreact processes VOC-oxidant pairs in a unified framework, it learns representations from the molecular graphs of VOCs
and oxidants through the MPNN, and encodes their interactions via feature aggregation. This design enables the model to
accept arbitrary VOC-oxidant combinations and simultaneously predict reaction rate constants k; (where i € {¢OH, *Cl, NOs,
or Osz}). Compared to traditional single-oxidant prediction models, Vreact shows significantly improved performance,
achieving higher accuracy and and broader generalizability across multiple oxidants. Furthermore, the model’s interaction
module captures atomic-level interaction patterns, providing mechanistic insights into VOC oxidation process via
interpretable interaction weight matrices. Applying Vreact to 447 atmospheric VOCs not included in the training data
revealed a wide distribution of oxidation reactivities and confirmed that alkenes and aromatics exhibit higher reactivity,

acting as key precursors for ozone and SOA formation.
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2 Methods and Data
2.1 Collection and Preprocessing of Reaction Rate Constant Dataset

The VOCs reaction rate constant dataset compiled by McGillen et al. is utilized in the study, which includes gas-phase
reaction rate constants of natural atmospheric VOCs, halocarbons, and their degradation products with *OH, *Cl, NO3
radicals, and Oz, within a temperature range of 250-370K (McGillen et al., 2020). Under thermodynamic standard conditions
at 298K, a total of 2802 gas-phase reaction rate constant data points were obtained, encompassing 1586 VOCs and 4
oxidants. This dataset includes k; values for 1363 VOCs with *OH, 735 VOCs with *Cl, 393 VOCs with NO3 radicals, and
311 VOCs with Oz Due to the wide range of reaction rate constants ki in the dataset (1.460x102'~7.550x10
©Ocm3/(molecule-s), S.D.=#1.040x<101%), the data were log-transformed to logioki to reduce skewness and mitigate the
influence of outliers on the model. To ensure a balanced distribution of each type of oxidant in the training, validation, and
internal test sets, the dataset was divided using stratified random sampling into training, validation and internal test sets in an
8:1:1 ratio (Table S1).

2.2 Construction and Training of the Vreact Model

All VOCs and oxidant molecules were converted into graphs G (V, E) (Text S1). The generated molecular graph G includes
ten types of atomic information for each non-hydrogen atom, such as element type, chirality, and atomic hybridization type,
as well as four types of bond information, including bond type and conjugation (Table S2). A Siamese MPNN architecture-
Vreact, was designed to simultaneously accept input features of VOCs and oxidant molecules (Fig. 1). The model takes the
SMILES of VOCs and oxidants as input and primarily includes a VOC molecular graph representation layer and a MPNN
layer, an oxidant molecular graph representation layer and MPNN layer, an interaction layer, and a prediction layer. The
molecular graph G(V, E) encoding layers of VOCs and oxidants containing node feature matrix X and edge feature matrix Y,
which learn molecular properties through the MPNN layer (Gilmer et al., 2017). The MPNN forward propagation process
consists of two phases: Message Passing Phase and Readout Phase and generates molecular feature tensors A for VOCs and
B for oxidants. Subsequently, the interaction layer transforms the molecular features A of VOCs and B of oxidants into
tensors A1 and B: of the same shape and concatenates them into tensor Z. Reaction rate constants are determined not only by
the molecular structure of the reactants but also by the interactions between the reactants. The interaction feature tensor | is
dot-multiplied with A to obtain the oxidant-affected VOC feature tensor A'; similarly, it is dot-multiplied with B to obtain
the VOC-affected oxidant feature tensor B'. These operations embed the learned interaction features into the molecular
structure features, providing a more comprehensive representation of the chemical reaction mechanisms between the two
reactants. The prediction phase is composed of a pooling layer and three fully connected layers. The pooling layer uses the
Set2Set method to achieve global average pooling, and the fully connected layers map the input features to the final

predicted values (logiok;). More details can be found in Text S2.
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During model training, Adaptive Moment Estimation (Adam) (Kingma and Ba, 2017) was employed to address the fixed
learning rates issue in traditional gradient descent methods. Adam adaptively adjusts the learning rate of each parameter
using first-order moment estimates (mean of the gradients) and second-order moment estimates (exponentially moving
average of the uncentered variance of the gradients), aiding in rapid model convergence. Bayesian optimization was utilized
for hyperparameter tuning, which included the initial learning rate of the optimizer (Ir), batch size, L2 regularization
parameter (weight decay), dropout rate (p), and MPNN time steps (T) (Text S3). After identifying the optimal
hyperparameter combination (Table S3) on the validation set, and the best model was saved. The predictive performance of
the model was assessed using Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),

and coefficient of determination (R (Text S4). For more information on the model implementation, please refer to Text S5.
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Figure 1. Schematic of the Vreact Architecture. SMILES of VOCs and oxidants are converted into molecular graphs, where nodes
represent atoms and edges represent bonds. Atomic and bond features form matrices X and Y. Using a Siamese MPNN
architecture, the Vreact model processes these features through separate MPNN layers for VOCs and oxidants. The final
prediction layer outputs logioki, incorporating both molecular and interaction features.
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3 Results and Discussion
3.1 Analysis of VOC and Oxidant Reaction Data Distribution and Characteristics

The categories and distribution characteristics of VOC and oxidant reaction data are first explored in the study, which
includes logioki data for 1586 VOCs with *OH, *Cl, NOs, and O3 (Fig. 2A). The dataset contains the most data for *OH,
accounting for 48.64% of the total, as *OH plays a crucial role in the atmosphere, rapidly reacting with organic pollutants
and dominating their removal process. The remaining data points are for Cl (26.23%), NOs (14.03%), and Oz (11.1%) in
descending order of data quantity. O3 is primarily produced through photochemical reactions involving NOy and VOCs,
while NOg, as the principal nighttime atmospheric oxidant, significantly contributes to the oxidation and removal of trace
gases. The dataset encompasses VOCs with diverse chemical structures, including 22 functional groups such as double
bonds, esters, benzene rings, and halogen atoms (F, S, Cl, Br, and 1) (Fig. 2B). This extensive chemical structure space
facilitates the model's ability to learn more structural features and enhances its generalization capability.

Moreover, although there is some overlap in the reactions of the four oxidants with VOCs, each oxidant also has specific
VOC reactions (Fig. 2C). There are 747 VOCs with k; data for only one oxidant and 839 VOCs with k; data for multiple
oxidants, of which 81 VOCs have data for all four oxidants. For example, isoprene can react with *OH, NOs, and «Cl
through hydrogen abstraction reactions, and undergo addition reactions with O3z via its unsaturated double bonds.
Furthermore, the four oxidants exhibit different logiok; value distribution with VOCs due to differences in chemical
structures and reactivity (Fig. 2D). *OH, due to its high oxidation potential, usually reacts quickly with VOCs via hydrogen
abstraction, with logiok; concentrated in the range of -14.000 to -10.000. In contrast, Os typically undergoes slower addition
reactions with unsaturated bonds in reactants (Ziemann and Atkinson, 2012), with logiok; ranging from -20.836 to -13.721.
NO; can participate in both hydrogen abstraction and addition reactions, resulting in a wider range of logioki values. The
diverse reaction rates of these oxidants maintain the composition and oxidative state of aerosols in the atmosphere, but the
uneven distribution of their values makes predicting ki more challenging. Even for the same oxidant, VOCs with different
structures exhibit varied reaction rates in gas-phase oxidation reactions. For example, NOs reacts very slowly with aromatic
rings, with a k; value of 3.900x<10'® cm¥molecule-s) for xylene. In contrast, NOs; can rapidly abstract hydrogen from

hydroxyl groups, with a ki value of up to 1.72>102° cm¥molecule-s) for 3-methylcatechol.
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Figure 2. Visualization of VOCs Dataset. (A) Proportion of the four types of oxidants. (B) Number of VOCs containing each
functional group. MultFct: multifunctional; AroRings: aromatic rings; NaRings: non-aromatic rings; Tbonds: triple bonds;
CumDBs: cumulated double bonds; ConjDBs: conjugated double bonds; SepDBs: separated double bonds. (C) Number of VOCs
that can undergo oxidation reactions with the four oxidants. (D) Distribution of logioki values for the four oxidants. (E) Heatmap of
reaction rate constants based on VOCs clustering, where each grid represents a cluster of structurally similar VOCs. The color
gradient indicates the logioki values, with red indicating higher logoki values (faster reaction rates), blue indicating lower logioki
values (slower reaction rates), and white indicating the absence of logioki data for that cluster. The cluster containing butyl
acrylate are enclosed within the black box.

Furthermore, the same VOCs show different reaction rates with different oxidants. To explore the relationship between
structural differences of VOCs and reaction rates, the study employed the Self-Organizing Map (SOM) algorithm (Kohonen,
2006) to visualize logioki values. Based on the Morgan fingerprint similarity of VOCs, the VOCs were clustered into 100
groups, each containing VOCs with similar molecular structures. Each grid in Fig. 2E represents a cluster of VOCs, and the
color gradient indicates the logioki values of their reactions with the corresponding oxidants. By comparing the logiok; values
of the same VOCs with four oxidants, the relationship between structural features and reaction rates for each oxidant can be
evaluated. For example, butyl acrylate (CAS RN.141-32-2) reacts slowly with NOjs radicals and Oz, mainly due to the
unsaturated addition reactions through the carbon-carbon double bond, where the ester group in the molecular structure
produces an electron-withdrawing effect, reducing the electron density in the  bond and thus lowering the reaction rate (Gai

et al., 2009; Wang et al., 2010). In contrast, it reacts faster with «OH and *ClI through hydrogen abstraction rather than

7
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addition (Le Calvéet al., 1997; Ohta, 1984; Wang et al., 2018). This demonstrates that the dataset, which includes various
oxidants and VOCs, exhibits diverse logiok; values. The overall logioki values differ significantly between different oxidants.
This diverse dataset enables the model to learn the reaction information between VOCs and different oxidants, thereby
improving model performance and prediction accuracy.

3.2 Performance Evaluation of Vreact Model

The Siamese MPNN architecture of the Vreact captures both molecular features of VOCs and oxidants as well as their
interaction dynamics simultaneously. During hyperparameter optimization, the set of hyperparameters that minimized MSE
on the validation set was selected. After training for 46 epochs (Fig. S1), Vreact achieved robust predictive performance on
the validation set, with R=of 0.961, MSE of 0.194 and MAE of 0.314 for logioki (Fig. 3A). On the internal test set, the model
achieved R=of 0.941, MSE of 0.299 and MAE of 0.322 for logiki (Fig. 3A), indicating robust predictive capability and
excellent generalization ability for unseen VOC-oxidant combinations. The small MAE difference between the validation set
and internal test sets, despite a larger difference in MSE, indicates that MSE is more sensitive to outliers or large errors,
while MAE directly reflects the average absolute prediction error. Although the R=0n the internal test set is slightly lower
than on the validation set, this minor discrepancy does not affect the model's robust predictive ability. The result on the
internal test set is available in Table S4.

To explore the predictive performance of the Vreact model for different types of oxidants, we evaluated the prediction
performance for *OH, *Cl, O3, and NOj3 separately. The regression fit of predicted logiok; values versus experimental values
for the four oxidants (Fig. 3B) shows that Oz and NOs3 have higher dispersion compared to *OH and *CIl. The R=values for
the reactions of the four oxidants, in descending order, are *OH > ¢Cl > NO3 > O3, with *OH and *ClI having R=2values of
0.942 and 0.916, respectively. The prediction performance for NO3 radicals and Os is comparatively lower, with R=2values
below 0.800. The *OH dataset is the most abundant and concentrated, whereas the logioki values for NO3 are highly
dispersed, which may cause the model to have difficulty capturing all patterns and relationships for NOs, leading to

prediction biases.
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Figure 3. Evaluation and comparison of the predictive performance of the Vreact model. (A) MSE, MAE, R=of Vreact (trained on
the McGillen et al. dataset) on the validation set, internal test set, and external post-2020 test set. (B) R=2values for logioki
predictions of four oxidants’ reactions in the internal test set. (C) Distribution of AE between predicted and experimental logioki
values for the four oxidants in the internal test set. (D-F) The chemical spatial distribution of VOCs in the «OH, Os, and NOs
datasets used in this study and prior literatures. (G) R=2comparison among previously published single-oxidant models, the
original Vreact (evaluated on literature test set), and Retrained Vreact (trained and tested using the same splits as the literature
models) highlighting adaptability.
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The Absolute Error (AE) between the predicted and experimental logiok; values for the four types of oxidants are presented
in Fig. 3C. The median AE for *OH is 0.149, while O3 and NO3 exhibit median AEs of 0.301 and 0.287, respectively, which
are slightly higher than that of *OH. Overall, 84% of the AE values for Oz and NOs are within 1. As depicted in the Fig. 3C,
individual outliers in AE contribute to the increased RMSE and MAE for O3 and NOs, and the consequent decrease in R=
For example, the AE for the reaction of NO3z with azulene (CioHsg) is 4.653. Azulene, an aromatic hydrocarbon composed of
a seven-membered ring fused to a five-membered ring, is an isomer of naphthalene (C1oHs). NOs, as electrophilic reagents,
tend to attack regions with higher electron density. Compared to naphthalene, the electron density distribution of azulene is
uneven, with certain regions having high electron density that may facilitate effective interactions with NOs. Additionally,
the structure of azulene may reduce steric hindrance, allowing NO3 radicals easier access to reaction sites (Atkinson et al.,
1992), resulting in a higher reaction rate constant and increasing the model's prediction difficulty. Similarly, the predicted
logiok; value for the reaction of NO3; with diiodomethane (CHzly) is significantly lower than the true value (AE=2.763). This
discrepancy may be attributed to the limited representation of iodine-containing VOCs in the dataset, with only iodomethane
(CHgsl) and iodoethane (CoHsl) having k; values in the training and validation sets. This limited data prevents the model from
fully learning the reaction characteristics of iodine-containing compounds, resulting in a larger prediction error for

diiodomethane with NOs radicals.

3.3 Comparation with Single-Oxidant Prediction Models

Most existing machine learning models for predicting VOC reaction rates constants are tailored for individual oxidants,
limiting their applicability to complex atmospheric systems involving multiple oxidants. In contrast, the Siamese MPNN
architecture of the Vreact enables simultaneous learning of molecular features and interaction patterns across different VOC-
oxidant pairs within a unified framework. To benchmark Vreact against previously published single-oxidant QSAR/ML
models, we selected three top-performing models developed under 298K conditions: Liu et al. (2020) for «OH (180 data
points), Xu et al. (2013) for O3 (95 data points), and Liu et al. (2022) for NOs radicals (189 data points). Prior to evaluation,
we applied Uniform Manifold Approximation and Projection (UMAP) to reduce the dimensionality of the Morgan molecular
fingerprints to visualize the chemical space of both the comparison datasets and the Vreact training set (Figs. 3D-F). The
observed structural overlap confirms that Vreact’s dataset spans a broad and diverse chemical space. Given that our study
used different data than those reported in the literature, we employed two strategies for comparison. First, the pre-trained
Vreact model (trained on the McGillen dataset) was directly applied to the test sets from the literature to evaluate
extrapolation performance. Second, Vreact was retrained on each literature dataset using their original train/test splits,
allowing a direct comparison with published models on literature test sets (Retrained Vreact).

As shown in Fig 3G. both the original Vreact model and its retrained version consistently outperformed the single-oxidant
models from Liu et al. (2022) and Xu et al. (2013) on the *OH and Os literature test sets, achieving higher R=2values and
demonstrating superior regression fits between predicted and experimental values. These results highlight the capability of

the Vreact architecture—whether trained on a broad multi-oxidant dataset or fine-tuned on smaller single-oxidant datasets—

10
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to effectively learn structural features of VOCs and oxidants and capture complex molecular interactions through its Siamese
MPNN framework. For the NOj3 prediction task, the original Vreact model performed poorly, but the retrained Vreact model
showed an improvement in R= This suggests that a unified dataset containing multiple oxidants may introduce additional
noise during training, affecting the model's ability to learn key interaction features between NO3z and VOCs. Nonetheless, the
model’s R=on the literature test set still reached 0.842, indicating only a slight loss in predictive accuracy, which is

acceptable.

3.4 Mechanism Insights Through Interaction Analysis

The interaction layer of the Vreact model can elucidate the atomic interaction mechanisms between VOCs and oxidants. The
interaction matrix, sized ni>n,, where n; represents the number of non-hydrogen atoms in the VOC molecule and n;
represents the number of non-hydrogen atoms in the oxidant molecule. Mapping these interaction coefficients onto the
molecular structure highlights key atoms that determine the reaction rate.

To exemplify this mechanism, we analysed specific cases. 2-methyl-4-penten-2-ol is an unsaturated oxygenated volatile
organic compound (OVOC) that constitutes a significant proportion of the atmospheric VOCs, primarily sourced from
industrial solvents used in ink and jet ink manufacturing (Li et al., 2021). As shown in Fig. 4A, the interaction coefficient for
the distal unsaturated carbon atoms is the highest during the reaction with Os, indicating these are likely the reaction sites for
Os attack. It is inferred that Oz adds to the unsaturated carbon-carbon double bond through an addition reaction, forming
primary ozonides (POZs). These POZs are unstable intermediates that rapidly cleave to produce carbonyl compounds and
carbon-based radicals, which further rearrange to form secondary ozonides (SOZs). The SOZs and their reaction products are
precursors of SOA. Another example is y-caprolactone (GCL), a five-membered ring ester used in perfumes, which rapidly
reacts and degrades with «OH upon entering the atmosphere. Interaction weight analysis shows that the carbon atom linked
to the ethyl group contributes most to GCL's oxidative degradation by *OH (Fig. 4B), suggesting that *OH initially attacks
this carbon atom, abstracting a H atom to form a carbon radical. Previous studies indicate that the reactivity of carbons
adjacent to the oxygen atom in lactones is particularly significant in reactions with «OH, especially when alkyl substituents

are attached to this carbon, which enhances its reactivity (Barnes et al., 2014).
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Figure 4. Visualization of atomic weights in VOC molecules. (A) Reaction process of 2-methyl-4-penten-2-ol with Os. (B) Reaction
275 process of y-caprolactone with *OH. The darker the highlighted color of the atom, the stronger its interaction in the gas-phase

oxidation reaction.

3.5 Evaluating Extrapolation Ability and Prioritizing VOCs for Environmental Impact

To further validate the extrapolation capability and generalization performance of the Vreact model, developed using a
dataset compiled up to the year 2020 (Baptista et al., 2021; Joudan et al., 2022; Li et al., 2021), additional ki data from

280 experimentally measured VOCs and oxidants published after 2020 were collected as an external test set (post-2020 test set)

(Table 1). The prediction results showed that the AE between the experimental logioki and the predicted values was within 1,

with the reaction rate constant prediction for y-heptalactone and *OH exhibiting the smallest prediction error. The AE for y-
heptalactone with «OH was only 0.005, and the overall MAE was 0.240, with an MSE of 0.112 and an R=of 0.98 (Fig. 3A

shown in red). The results indicate that the Vreact can accurately predict the atmospheric oxidation reaction rate constants of

285 unknown VOCs, demonstrating its potential application in addressing complex atmospheric chemistry issues involving the

interactions between VOCs and oxidants.

Table 1. The prediction results on the post-2020 test set.

Chemical Experimental Predicted
VOC name Oxidant P AE Ref.
structure logaoki logaoki
2-methyl-4- HO Lietal.,
Y )4/\ -17.370 6712 0658
penten-2-ol RN 2021)
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Despite the identification of hundreds of VOC species, the environmental behavior of most VOCs in the atmosphere and
their potential contributions to particulate matter formation and ozone increase remain largely unclear. To address this gap,
we employed the Vreact model to evaluate the atmospheric oxidation reaction rate constants of a broad spectrum of VOCs.
Molecular structures for 447 VOCs with unknown atmospheric oxidation k; values were collected from previous research,
which evaluated more than 500 Chinese domestic source profiles, including literature and field measurements (Sha et al.,
2021) (Table S5). After excluding VOCs already included in the Vreact dataset, 296, 339, 416, and 369 data points for *OH,
*Cl, O3, and NOs were retained, respectively. The prediction results indicated that, although the oxidation reaction rates of
VOCs in the atmosphere vary (Fig. 5A), the differences in logioki values are primarily influenced by the type of oxidant, with
smaller variations in logioki values observed for different VOCs reacting with the same oxidant. Among these, reactions with
*OH and «Cl were the fastest, consistent with the results from the McGillen dataset analysis used in the modeling (Fig. 2D).
Additionally, the changes in the proportion of VOC types within different reaction rate intervals (Fig. 5B) demonstrated that
the composition of VOC types varied with reaction rates. Halocarbons exhibited relatively slower reaction rates, while
alkenes and aromatics reacted relatively quickly, and oxygenated compounds showed a more uniform rate distribution.
Consequently, areas with high emissions of alkenes and aromatics will produce more reaction products per unit time,
providing precursors for Oz and SOA formation (Gao et al., 2021).

The top five VOCs with the fastest reaction rates with «OH, *Cl, O3, and NO3 were further examined in the study (Fig. 5C).
Among these, 2,6-Dimethyl-2,6-cyclooctadiene (CAS RN: 3760-14-3) is a volatile compound with an irritating odor,
exhibiting the fastest reaction rates with «OH, ¢Cl, and Os. Additionally, 1,3-cyclopentadiene (CAS RN: 542-92-7) and 1,4-
Dimethylcyclohexene (CAS RN: 70688-47-0) also showed high reaction rates with Os, *Cl, and *OH, likely due to the
presence of double bonds and cyclic structures in these molecules. The carbon atoms in the double bonds and those

connected to methyl groups generally have high reactivity. Therefore, it could be inferred that these VOCs, or VOCs with
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similar structures, may significantly contribute to the formation of fine particulate matter and the increase in ozone in the

atmosphere.
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Figure 5. Predicted reaction rate constants for VOCs atmospheric oxidation reactions. (A) Predicted mean logioki values for
different types of VOCs. (B) Distribution of VOC types ranked by predicted reaction rates, divided into quartiles: the fastest 25%
(Q1), 25%-50% (Q2), 50%-75% (Q3), and the slowest 25% (Q4). (C) Molecular structures of VOCs with the fastest reaction rates
with the four oxidants.

4 Concluding

Understanding the oxidation rates of VOCs is crucial for evaluating their impact on atmospheric chemistry and air pollution.
In this study, Vreact, a deep learning-based model, is introduced to predict VOC oxidation reaction rate constants with
multiple oxidants simultaneously. The model demonstrates high predictive accuracy while offering mechanistic insights into
VOC oxidation by analyzing atomic-level interaction patterns. By incorporating a broad range of VOC structures and

oxidant interactions, Vreact enhances its generalizability, allowing for large-scale screening of previously uncharacterized
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VOC oxidation rates. Additionally, an interactive web-based tool (http://vreact.envwind.site:8001) is provided (Fig. S2),

which facilitates VOC oxidation rate predictions for non-experts. This tool significantly improves accessibility, enabling
researchers, policymakers, and environmental agencies to assess VOC reactivity and prioritize mitigation efforts effectively.
Given the increasing complexity of atmospheric pollution and its global impacts on human health and climate, these
advancements in predictive modeling offer valuable resources for addressing worldwide air quality challenges.

However, Vreact has several limitations. The model’s performance depends on the availability and quality of experimental
kinetic data. The training dataset primarily relies on measured reaction rate constants, which may not cover all VOCs,
especially those with complex structures or containing halogen and sulfur groups. As a result, VOC classes that are
underrepresented in the dataset, such as iodine-containing compounds, may exhibit prediction errors, highlighting the need
for further data collection. Additionally, while Vreact captures essential molecular interactions, biases may arise from the
existing reaction rate constants datasets, especially when reaction conditions or mechanisms differ from those used in
training. Extrapolating reaction rate constants for uncharacterized VOCs presents another challenge. While the model shows
strong generalization capabilities, its accuracy may decrease for highly reactive or structurally unique compounds. To
improve predictions, future work could integrate high-throughput quantum chemical calculations and automated
experimental validation. Optimizing inference speed and integrating Vreact with atmospheric chemistry models could

enhance its applicability in real-time air quality simulations.

Data and Code Availability

The code and datasets used and/or analyzed during the current study are available at https://github.com/Luo-Jiagi/Vreact and

supplemental information.

Supplementary Material

Detailed information about the learning curve of the Vreact training process (Figure S1); User interface of the web platform
for predicting VOC reaction rate constants using the Vreact model (Figure S2); Graph representation of molecular structures
(Text S1); MPNN message passing and readout phases for molecular graphs (Text S2); Regularization and early stopping
techniques in the Vreact model training (Text S3); Model performance evaluation metrics (Text S4); Implementation of the
Vreact model (Text S5); Distribution of VOCs reactions with atmospheric oxidants across datasets (Table S1); Atomic
features and bond features used in molecular graph representation (Table S2); Hyperparameter search space and optimal
settings for the Vreact model (Table S3);Experimental and predicted logioki values for VOCs on the internal test dataset
(Table S4); 447 real-world atmospheric VOCs (Table S5).
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